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ABSTRACT 

This Report studies the stationary flow field at 
large distances from a finite obstacle moving uniformly i n  
a viscous, incompressible fluid. The principal results 
consist of asymptotic expansions, uniformly valid for large 
distances, of the velocity and the pressure of the flow 
field. 

The expansion procedure employed i s  based upon 
the introduction of a small, extraneous parameter; the con- 
struction i s  thus recast as a perturbation analysis for small 
values  of the parameter. Owing to the presence of a viscous 
wake, the perturbation i s  in  general a singular one, and i s  
treated accordingly, using methods developed for related 
hydrodynamical problems. I t  i s  found that the procedures 
needed for the three-dimensional case differ in no signifi- 
cant ways from the corresponding problem i n  two dimen- 
sions. However, the actual construction of t h e  expansion 

i s  in general very different in the multidimensional problem, 
owing to the possible existence of strong crossflow in the 
wake region. 

The calculated r e s u l t s  include the following: for 
the case of axially symmetric flow, a uniformly valid ex- 
pansion of the velocity to order r - 2  inclusive and of the 
pressure to order r3  inclusive, r being the distance from 
the obstacle; for the general case, an expansion of the 
velocity to order r-3'2 inclusive and of the pressure to 
order r - 2  inclusive. 

1 
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1. INTRODUCTION 

Problems related to expansions of Navier-Stokes solut ions for large d is tances  have been d iscussed  

by a number of  authors, especially by Imai (Ref. 1) and by Chang (Ref. 2). In particular,  i t  has  been shown 

in Ref. 2 that the basic  problem of construction may be treated by hydrodynamical expansion procedures of 

the type discussed and i l lustrated by Lagerstrom, Cole, and Kaplun (Ref. 3 and 4). In the present Report, 

the methods of  Ref. 2, 3, and 4 are applied to axially symmetric and to strictly three-dimensional Navier- 

Stokes solutions.  Expansion procedures for the three-dimensional c a s e  are  d iscussed  and several  terms of 

the expansion are  given. It i s  pointed out a l so  that  the procedures a re  sl ightly different for the c a s e  of three 

(or more) dimensions, owing to certain changes in the nature of crossflow and in the role of the pressure ( s e e  

Section IV-A). The axially symmetric case ,  regarded as a problem in two dimensions, i s  d i scussed  

separately (Par t  111). 

A certain c l a s s  of Navier-Stokes solutions will be studied. T h e  basic  problem in mind i s  that  of a 

stationary,  viscous, incompressible flow p a s t  a finite three-dimensional solid,  which tends to a uniform 

stream a t  large dis tances  and sa t i s f ies  the no-slip condition a t  the solid.  Assuming that such a solution is  

given, we are  interested in an asymptotic expansion of the solution for large d is tance  at a fixed Reynolds  

number (Re), more precisely,  in an asymptotic expansion valid to all orders r-n as r + w , where r i s  the 

dis tance from the origin. The problem studied here,  however, will be of a slightly different nature. In the 

first  place,  the c lass  of Navier-Stokes solutions s tudied will be somewhat larger: Given an asymptotic 

se r ies ,  i t  is difficult to determine whether the related Navier-Stokes solut ions contain a “solid,” i.e., a 

closed streamsurface. On the other hand, a certain c l a s s  of Navier-Stokes solut ions i s  re la ted to our ser ies .  

In the second place,  in the present Report we sha l l  be concerned exclusively with the problem of construc- 

tion of the ser ies ,  which, of course,  i s  only a part of the complete problem of asymptotic equality. The 

special  nature of the relationship between our s e r i e s  and the c l a s s  of Navier-Stokes solut ions s tudied (be i t ,  

for example, that of actual  asymptotic equality or even that of total  equality) i s  then immaterial for our 

purposes. On the other hand, a s ta tement  of the intended validity of our resu l t s  i s  desirable .  The class of 

Navier-Stokes solutions s tudied and the s e n s e  in which our resu l t s  are  intended to be valid are  descr ibed in 

Sect ions 11-A and 11-B. 

The methods of Ref. 2 will be used: An extraneous nondimensional parameter E (a lso cal led the 

artificial parameter”) i s  introduced into the exac t  solution in such a manner that the expansion for large r L I  

2 
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may be replaced by a parameter-type expansion for small E. In the present problem, E may be regarded as the  

ratio of a characterist ic length to  the length of an extraneous standard of measurement. An “outer” and an 

“inner” expansion are  then constructed, representing respectively the repeated applications of an “outer” 

and an “inner” limit process .  The outer expansion is valid for large d is tances  exclusive of the wake, while 

the inner expansion is valid in the  wake. T h e  regions of validity of the two expansions overlap in the s e n s e  

of Ref. 4. A “composite” expansion, uniformly valid for large distances,  may then be constructed from the 

two principal expansions ( see  Sections HI-J and IV-I). An advantage of the parametric procedure is that one 

is f i rs t  led to approximate partial differential equations, of considerable intuitive importance, while 

coordinate-type procedures would lead directly to ordinary differential equations. 

A number of short cu ts  will be used in the course of the construction. However, the construction 

procedures a re  explained in Pa r t  II, where references are a l so  given concerning points  which require more 

eiaborate discussion.  In particular, reference will be made to two principles: (1) the principle of elimina- 

bility and (2) the principle of transcendental decay of vorticity. The two principles are discussed in  

Sect ions II-C and 11-D. 

3 
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II. THE EXACT SOLUTIONS AND THE EXPANSION PROCEDURES 

A. The Exact Solutions 

We consider stationary flows of a viscous, incompressible fluid in three dimensions. The  following 

notation i s  used: 

q = velocity; p = pressure;  xi = Cartesian coordinates,  

3 

1 
x1 = x, x2 = y, x3 = 2, r2 = c (zip; 

p = density = constant;  I/ = kinematic viscosity.  

The  governing equations are  the Navier-Stokes equations: 

( q .  V ) q  = - - 1 Qp + U Q  2 q 

P 

Q . q = O  

Without l o s s  of generality, we p a s s  directly to the nondimensional form of the Navier-Stokes equations: 

1 * 2  
(q* . v*)q* = -Q * p* + ~ Q q* (0  < %Q < m, 

RQ 

Q* . q* = 0 

The  transformation 

q = uq* 

p = pu2p* 4- P 

* 
xi = L X i  

4 
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sends  every solution (q*,p*) of Eq. (3) into a family of solutions of Eq. (2) which depends on the dimensional 

parameters U ,  L, P, p, v; and, conversely, every solution of Eq. (2) may be so obtained. The  question of the 

ex is tence  of a characteristic length for a given solution of Eq. (2) is thus  expelled from our considerations. 

We shall consider solutions of Eq. (3) which sa t i s fy  the following conditions: 

1. There ex i s t s  a sphere S such that q* and p* are regular outside S and continuous at 

infinity. 

2. A t  infinity, 

We sha l l  a l so  require 

Condition 3 is not essent ia l ,  but l eads  to a number of well-known dynamical relations concerning flow at 

large d is tances .  Above, solutions of Eq. (3) are regarded as distinct for dist inct  va lues  of the Reynolds 

number %. Hence  a solution (q*, p*) of Eq. (3) i s  a function of the $ only. Expansions will be constructed 

for r* -+ 00. 

B. Limits and Expansions 

Given a solution (q*, p*) one may introduce an extraneous parameter E and new independent variables 
.la 

xi or Ti by the substi tutions 

- 
x i =  ‘q. (Outer variables) (6a) 

- - -  
x = x  

& E  %- y 

- Z = E  %; 

(Inner variables) (6b) 

5 
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n, n, 

The parameter E and the var iables  xi admit the following evident interpretation: xi = x i / R  are  the 

coordinates of a point referred to  an extraneous standard of length measurement, of length R. In the outer 

limit process ,  R and ;i are fixed while the characterist ic length,  L = E R ,  i s  decreased to zero; the Reynolds  

number, 24. = U L  v, i s  held fixed in the process.  By repeated appl icat ions of the outer and inner limit 

p rocesses  to a given flow quantity W, one obtains  (provided the l imits  exist)  two expansions,  outer and inner, 

of the form 

Here { s i ( € ) }  (i = 0, 1, 2, .-.) i s  a sequence of functions (cal led orders or gauge 

‘i + 1  

‘i 

lim - = o  
E +  0 

(i = 0, 1, 2, ... ) 

(Outer expansion) 

(Inner expansion) 

nctions) such that 

If domains of validity of partial  sums of expansions (7) overlap, as d iscussed  in Ref. 4, i t  i s  then possible  

to construct a composite expansion which i s  uniformly valid for r* + 00. 

The  terms of expansions (7) are defined by the form of the expansions (7a) and (7b), except  for the 

trivial freedom allowed in the choice of 6 ’s .  The  “form” of the expansion, understood in an  extended s e n s e  

to include the  st ipulated domains of uniform validity,  a l so  determines the equations and the boundary and 

matching conditions which the terms must sat isfy.  (The equations may be found by a formal substi tution of 

the s e r i e s  in  Eq. 3). . 
In the present Report, matching ser ies  of the form (7) will be constructed on the b a s i s  of equations,  

boundary, and matching conditions (and an additional condition, namely, that  of eliminability of the 

extraneous parameter, s e e  Section 11-C). The  exis tence of an  actual  asymptotic expansion of the form (7) i s  

, not absolutely essent ia l  and i s  in fact  not st ipulated in the present thesis ;  this  question i s  d i scussed  

explicit ly below. Different quantit ies,  W, will be introduced as needed in each c a s e  ( s e e  Eq. 15, 16, 53, and 

56, which give the explicit  forms for the several  c a s e s  treated). The gauge functions, si(€), will be 

determined iteratively, but not in strictly consecutive order; the iteration process  involves  “switchback’y 

( a s  does  that  of Chang, Ref. 2). T h e  6’s will be reindexed in the form 

6 
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6. = 8 
L v .  

where the V’S are chosen as convenient in the iteration process  (each v represents  what is regarded as a 

definite s t ep  in the procedure). 

The  stipulated domains of uniform validity of expansions (7a) and (7b) may be described as follows: 

under the outer limit process ,  q* t ends  to i and p* tends to zero uniformly over the entire ;-space, excluding 

the point a t  t he  origin xi = 0. T h i s  i s  evident by hypothesis (i.e., from the boundary conditions, Eq. Sa). How- 

ever, in general, the outer expansion i s  not uniform at the positive z-axis. Th i s  is due to the presence of 

singular perturbations which represent the decay of the wake and are, in general, of order E% (e.g., in t he  

presence of lift) or of order E (drag but no lift). T h e  inner expansion, on the other hand, should be valid in 

the wake region, or, more precisely, in the right half of the Yi-space, excluding the plane X= 0. T h e  regions 

of validity of expansions (?a) and (7b) should overlap for large 7 (small z) ( see  Eq. 12 and 14). The non- 

uniformity of the  inner expansion at the plane X= 0 i s  not important; i t  i s  st ipulated that the outer expansion 

is valid a t  that  plane, excluding the point a t  the origin Zi = 0. Hence, the two expansions, inner and outer, 

should match a l so  for small X > 0. An additional stipulation will be made in order to  derive the boundary 

conditions at infinity for the outer expansion: it is stipulated tha t  the outer expansion is uniform at infinity, 

excluding only the posit ive z-axis, and that the two expansions,outer and inner, jointly cover the point at infinity. 

- 
- 

% 

In t h i s  Report, matching se r i e s  of the form (7) a re  constructed on the bas i s  of the assoc ia ted  

equations and conditions. The resu l t s  a re  intended to be valid in the following sense:  

1. For every partial sum of the expansion, and for every choice of the arbitrary constants  of 

the ser ies ,  there should ex is t  a related Navier-Stokes solution of the c l a s s  defined in 

Section 11-A (i-e.,  an (6 exact  solution”). 

2. Whenever an exact  solution h a s  an expansion of the form (7), then the expansion should 

be given correctly by our results.  

Statements 1 and 2 tell  u s  in what s ense  our se r ies  is “correct” or “grossly incorrect.” No other 

quest ions enter the  construction process. The  guidance supplied by s ta tements  1 and 2 is, however, needed 

in the construction procedure. 

In the first  place, statement 2 determines the assoc ia ted  equations and boundary conditions for each 

term of the ser ies .  Th i s  has  already been d iscussed  in a preceding paragraph ( see  Section 11-B). In 

7 
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accordance with statement 2, therefore, we should admit, for each term of (7), the most general  expression 

that i s  allowed by the boundary, matching, and diminabi l i ty  conditions (provided only that  the expression 

does  not contradict s ta tement  1). In the present expansions, there e x i s t  complementary solut ions of the 

assoc ia ted  equations (called “eigensolutions”) which sat isfy homogeneous boundary and matching conditions 

and the condition of eliminability ( see  Section 11-C). (Here, by “boundary” and “matching” conditions we 

understand, of  course, those conditions which a re  governing for the term in question, i.e., those conditions 

which may be derived from the overlap principle or from condition (5a). Thus ,  for example, i t  i s  not required 

that an outer eigensolution vanish a t  the posit ive x-axis, s i n c e  no such  fac t  der ives  from the b a s i c  premises.) 

The  most general  expression for each term i s  obtained by finding all possible  eigensolutions that a re  

admitted by the governing conditions for the term in question. In particular, it  appears  that  the question of 

so-called “intermediate orders” or “phantom terms” (i.e., the question of exis tence of terms of order not  

l i s ted  explicitly in each case)  may, in principle, be decided entirely on the b a s i s  of the conditions.  T h i s  i s  

i l lustrated in Section 111-D. 

‘u 

In accordance with statement 1, it i s  necessary to take into account the possible  “integrated effects” 

of the forcing term: the domains of validity do not become evident unti l  such effects  are considered. In 

general, the “integrated effects” include the possibil i ty of resonance and a l so  other  possibi l i t ies ,  e.g., that  

the solution may be rendered multivalued. In the present  case ,  however, an  estimate of the effects  of the 

forcing term i s  provided a t  each s t e p  by a subsequent  term of the ser ies ,  and will be here, in principle,  taken 

into account by inspection. The  forcing terms appear to be entirely harmless  within the s t ipulated domains 

of validity. 

I t  i s  believed that no other essent ia l  considerations need to  be taken into account: although the 

theory of constructions such as the present  ones  has  never been fully discussed,  i t  h a s  been suggested to 

the author that a favorable es t imate  of the possible  effects  of a small ,  arbitrary forcing term i s  probably 

sufficient,  i.e., may lead directly to a rigorous proof of s ta tement  1. 

C. The Principle of Eliminability 

All governing conditions for our se r ies  a re  derived from the definition of the exact  solut ions,  by 

means of the hypotheses on the validity of the s e r i e s  (cf. Section 11-B). It should be noted, therefore, that 

the definition h a s  changed: after the parameter h a s  been introduced, we are  dealing with functions q* (xi ; E )  

and p* Gi; E )  which sat isfy the Navier-Stokes equations (Eq. 3), the conditions 1, 2, and 3 (Section 11-A, 

‘u 

8 
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Eq. 5) ,  and the following eliminability conditions: 

+ ( q ~ ;  E) = lim q*(xT E; E)  
€+ 0 

p * ( x T ~ ;  E) = lim p* (x ;  E; E )  
€+ 0 

,b 

Conditions (8) state that E is eliminated by the substitution of x: E for x i .  Of a partial sum S, of se r i e s  (7a) 

and (7b) i t  i s  then required that, in i t s  stipulated domain of validity, Sn be expressible  in the form 

where 

I? 
i s  uniformly small. 

En( E )  

The condition (9) will be referred to  as the eliminability principle; i t  i s  a governing condition for the ser ies .  

D. The Principle of Rapid (Transcendental) Decay of Vorticity 

I t  i s  a certain (although possibly unproved) hydrodynamical fact  that, for a finite or semi-infinite 

so l id  in a uniform stream, the vorticity decays  a t  an exponential rate with dis tance outs ide the wake or the 

boundary layer, as the case  may be. It is a corollary to th i s  fact  that  

T h e  vorticity must also decay transcendentally in every term of our inner expansions, (7b), 

as x +  0. ( 10) 
- 

The term “principle of rapid decay” i s  in general applied to both the theorem and the corollary, and the 

corollary is a lso  often understood to st ipulate p + m rather than x + 0. In th i s  Report, by “principle of rapid 

decay” we shall  understand the corollary (10) rather than the theorem, and ;+ 0 rather than p + 00. The 

reason is  the following: the corollary i s  a direct consequence of the matching conditions a t  the plane x = 0, 

which supply the initial conditions for the partial differential equat ions involved. (Those solutions which 

decay algebraically have nonzero vorticity a t  the plane x = 0 and, hence, cannot be matched to the outer 

solutions there.) 

- - 

- 

- 

- 

9 
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The  “principle of rapid decay” i s  not a governing condition, but rather a consequence of the 
- 

governing matching conditions at x > 0. In the present construction i t  i s  almost equally convenient to  u s e  

either corollary (10) or the proper governing conditions, s ince  the equivalence of the two is evident a t  every 

step.  However, reference to the corollary (10) makes i t  possible  to re ject  algebraic solut ions at sight.  

10 
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A. 

111. THE ASYMPTOTIC EXPANSIONS FOR THE AXIALLY SYMMETRIC CASE 

The Principal Expansions 

In the present  Part we sha l l  consider solutions which are symmetric about  the e - a x i s .  T h e  axially 

symmetric problem will be treated as a problem in  two dimensions (i.e., in two independent variables). For 

discussion of the axially symmetric case as a “special case” of the general three-dimensional problem, see 

Part IV. 

The  velocity field q* may be expressed in the form 

q* = u * i z  + v* ip + w * i e  (11) 

where (iz, i 

x* ,  p*, 6, where 

i e )  i s  a right-handed orthonormal s e t  of vectors corresponding to cylindrical  polar coordinates 
P ’  

The  governing equations for the axially symmetric case are obtained by passage  to polar coordinates ( s e e  

Eq. A-1, Appendix A) and by putting 

aw* ap* au* av* 
a0 ae ae a0 

= o  - - -  (13) 

in Eq. (A-1). The  independent variables are  then x* and p*. T h e  corresponding inner and outer var iables  are  

yz; = E P *  (Outer variables) (14a) 
- 
x = EX*, 

p =  €Xp* (Inner variables) (14b) 
- 
x = EX*, 

11 
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Inner: 

B. A Remark Concerning the Outer Expansion: lrrotationality o f  the Outer Flow Field 

We shall show that the outer flow field is irrotational to all finite orders C as E +  0, or equivalently,  

to all finite orders r*-” as r* + m. 

The general Navier-Stokes equations in outer var iables  are 

” ” E “ 2  
q* q * .  vq* + vp* = __ 

Re 

” 
v . q *  = o  

” 

v =  (;) 

(17 a) 

12 
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If the  outer expansion (15) i s  inserted into Eq.  (17), a term-by-term calculation may in principle b e  carried 

out. It i s  poss ib le ,  however, to obtain the resul t  by a direct  argument. One f i rs t  observes  that  a n  irrotational, 

solenoidal vector f ie ld  q* i s  a solution of the Navier-Stokes equations. In particular, the term of order E in 

Eq.  (17a) i s  zero for any such solution. We now impose the condition that  the  vorticity of the related Navier- 

Stokes solut ions b e  zero at upstream infinity. T h i s  determines the  outer limit to  b e  an  irrotational flow. In  

the succeeding calculations,  the right-hand s i d e  of Eq. ( l 7 a )  will a lways vanish.  We conclude that the outer  

expansion of the vector velocity cons is t s  of a series of terms, each  of which i s  the  gradient of a harmonic 

function of xi. T h e  outer expansion of pressure i s  then a consequence of the constancy of total head in 

potential  flows. 

,x, 

In particular, if the expansions (15a) and (15b) are inserted into Bernoulli’s equation, one f inds 

C. Equations for the Inner Terms 

T h e  exac t  equations for the axially symmetric case ,  written in inner variables,  are  

I alli - aUi E a 2 i  dP * 
a z  a; a p  Re a x 2  

u p + - -  H ( U ’ )  + - = -If, - - 

where u’, V , and Ul are defined by 

13 
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and the l inear differential operators H and H are defined by 

H = - d - - 1 (5 + 1 $) 
dT Re 

1 1  
H 1 = H + - - -  

Re p2 

(190  

Each  term of Eq. (19a-d) tends to a uniform limit under the inner limit process .  By a repeated application of 

the inner limit process to the exact  governing equations,  or equivalently,  by formal substi tution of the inner 

expansion, one obtains governing “approximate” equations sa t i s f ied  by the terms of the inner expansion. 

The  approximate partial differential equations are  

+ - - - = O  
ax aF 

1 d2 wu-l 

H 1 u  ( w ) = -  + hu 
Re d X 2  

( 20 d) 

Note that u is not necessar i ly  an integer (cf. Eq. 16). The  forcing terms f , ,  gu , and h,, 

Equat ions (2Oa) through (20c) form a simultaneous system; Eq. (20d) may b e  solved independently. 

vanish for v < 2. 

14 
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D. The Leading Terns of the Inner and Outer Expansions 

The equations for u l ,  o l ,  pl ,  and w l  are  

H1(W1) = 0 

The relevant solut ions are 

a ~ e - ~  a% e 
u l = - - - ,  - u l = - - -  _-  

4rT x 2n p x  

-0 

w l = - - - - - ’  _- 
4n p x  

~ where 

Re p2 p*2 
I T = - - = - -  

- 
4 x  4 x* 

(21d) 

l and a and m are  arbitrary constants.  As a consequence of condition (5b), the constant  a may be related to the 

dimensionless  drag experienced by any c losed  streamsurface; the constant  m may be related to the moment 

( s e e  Section IV-K). The constant a also represents  the strength of a “viscous sink” placed a t  the origin. 

15 
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This may be s e e n  by considering the streamfunction $J,(X,P) for the terms u 1  and v l :  

One sees that,  for X > 0, 

To  obtain Eq. (22), one first observes  that the principle of eliminability requires that  p1 b e  a 

constant multiple of T - ' .  By matching with the outer expansion of Eq. (15b), i t  follows that p1 = 0. Also, 

again by eliminability, 

We require that f (a) be regular a t  a = 0 and vanish exponentially as D + w .  Inserting Eq. (24) into Eq. (21a), 

there resul ts  a second-order ordinary differential equation for f .  I t  i s  shown in Appendix A that  f i s  

determined by the conditions s ta ted  above to be a constant multiple of eCU. T h i s  determines u l  to within a 

multiplicative constant. Then u1 may be found by integrating the continuity equation; the constant  of 

integration i s  zero, s ince  v1 i s  regular on the l ine p =  0. 

The calculation of tu1 is similar to that of u1 and will be omitted. 

The outer  terms of order e2 appear as a consequence of the exis tence of a nonzero drag. The term 

q2 i s  determined by requiring that the mass  flux through any closed surface containing the  sol id  be zero. 

T h i s  condition has  been s ta ted  above by Eq. (5b). In order to balance the m a s s  inflow in  the  wake (cf. 

Eq.  23b) a term representing the flow due to a potential  source must appear in the outer expansion of q*. 

Thus ,  

One notes  that,  if condition (5b) were relaxed, the multiplicative constant in Eq. (25) would be arbitrary. 

16 
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T h e  possibil i ty of terms of orders other than those  exhibited explicitly in Eq. (15) and (16) will not 

b e  d iscussed  in full detail .  However, we shal l  eliminate terms of a l l  orders ea(O 5 u < 2, a f 1). T h i s  i s  

accomplished by referring to the principle of transcendental decay: F i rs t  we sha l l  consider the outer ex- 

pansion. Our solut ions must be regular except at zero and infinity and possibly along the posi t ive x-axis .  

It i s  evident a l so  that the outer solutions are regular on the posi t ive x - a x i s  (except possibly at infinity) 

u n l e s s  they match with nontrivial solutions of t h e  homogeneous system (Eq. 21). Hence i t  i s  sufficient to 

restr ic t  attention to (1) the  homogeneous system (Eq. 21) and (2) solut ions of Laplace ' s  equation which a re  

regular everywhere except  at the origin and at infinity. We next discover  that the  outer  solutions are regular 

at infinity s i n c e  there the condition q* = i must be satisfied (in virtue of a bas ic  st ipulated region of validity 

of  the  outer expansion). Hence the solut ions of Laplace 's  equation a re  poles  and proceed in integral powers 

of 

ry 

n, 

or equivalently in integral powers of E. 

Turning next to the homogeneous system (Eq. 21), we shal l  denote inner terms of order ea by sub- 

scr ipt  a. One sees immediately that p a  i s  a multiple of X-". By matching with the  outer expansion, we 

conclude p a =  O(0 5 u < 2). Also, we have ua = z afa(,a). From the  resu l t s  of Appendix A one f inds tha t  if 

p a =  0 and if  u a  sa t i s f ies  the  condition of transcendental decay, then necessar i ly  a = 1. An analogous state- 

ment holds  for wa. 

-- 

E. The Inner Terms of Order e2 

In t h i s  sect ion the terms u2' v2,  p2,  and w2 will be given. T h e  relevant equations are 

- - - = o  a p 2  

aF 

1 a 2 w 1  
+ h2 H 1 ( w )  = __ - 2 !Re ax2 

17 
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where the forcing functions f2  and h ,  are defined by 

( + f f l  -) all1 
f 2  = - u 1  ~ 

a x  a F  

(27 a) 

The constants appearing in the last  equations are not new and are given by 

The correct solution of Eq. (2.6~) is 

--2 p 2  = c x  

where c is a constant. Noting that the inner expansion of i x  - q2 is 

one sees that, by matching of the series  for the pressure, 

U 
e = - -  

47T 

18 
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Solving now for u 2 ,  i t  i s  convenient to divide the forcing term f2  into two parts: 

f2 = fp + fp 
where 

(31a) 

If  /2(l) appears  in place of f2 in Eq. (%a), there exis ts  a particular solution from which the parameter i s  

s t r ic t ly  eliminable. It i s  

(32) -u 
a 1  - X a2u1 a2 1 

47r x2  Re CG.2 4 r 2  
u ( l )  2 = - __ + - -  + - - ( ( 1 - a ) e  [ E i ( - a ) - l o g a ]  - 2 e - " - e - 2 D }  

The  notation for the exponential integral i s  that  of Ref. 5. A particular integral  for the forcing term fi2) i s  

4 x2 

as i s  eas i ly  seen  from the  fact  that  

1 

-2 
__ (1 - a) e-" 
X 

i s  an eigensolution. Using th i s  result ,  w e  arrive a t  the general solution of Eq. (%a): 

(33) 

(34) 

19 
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where u p )  i s  given by Eq.  (32) and al i s  an  arbitrary constant.  However, owing to  the  presence  of the term 

involving log X in Eq. (35b), E i s  not eliminable from E ~ u ~ .  T h i s  will necess i ta te  the introduction of a term 

of intermediate order ( see  Section 111-F). 

Integrating the continuity equation and adjusting the constant  of integration s o  as to make v2  

regular a t  p = 0, one finds 

where 

In order to determine w2, one first notes that if u is defined by P 

aP log; 
+ - - (1 - D) e-ff 

P 
2 -" u = -  

P 
a 4 x L  

then 

Thus 
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where rnl i s  a n  arbitrary constant.  Note that w 2  decays exponentially as X -+ 0. I t  i s  evident also that every 

partial  sum of the  inner expansion of 

valued. 

decays  exponentially, s ince  otherwise the pressure would be multi- 

F. Switchback: Terms of Intermediate Order 

We have  noted above that t h e  parameter i s  not s t r ic t ly  eliminable from the terms e2 u2, v2, and 

~ ~ / ~ w ~ .  For example, 

On the other hand, E i s  eliminable from 

2 The  second term appearing in Eq. (a), of order E log E ,  i s  precisely t h e  term u2a occurring in Eq. (16a). 

Terms which a r i se  in t h i s  manner will b e  referred to as “switchback terms.” Other examples  of switchback 

have  been d i s c u s s e d  by Chang (Ref.  2). In our construction, switchback terms are uniquely determined by 

the principle of eliminability. 

No attempt will b e  made to explain precisely t h e  reason for switchback. It should b e  noted, however, 

that  i t  is here  a nonlinear phenomenon. Switchback terms do not appear in  the expansions of solut ions of the 

Oseen  equations.  Also, one observes  that a particular integral for a forcing term which i s  an  eigensolution 

will a lways  require a switchback term (cf. Eq. 31c;  see a l so  Ref. 2, Appendix A). 

By writing relat ions analogous to Eq. (39) for v2 and w 2 ,  the switchback terms v2a and w2a may b e  

In each  c a s e  the  switchback term i s  observed to be a solution of the homogeneous equation. T h i s  found. 

can b e  checked by deriving the equations for the inner terms of order log E in the  usual way. 

‘The procedure j u s t  described appears to be sufficient to deal with all cases of switchback occurring in this 
Report. Since the necessary switchback terms will be obvious by inspection, explicit expressions are omitted here and 
in what follows. 

21 
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G. The Outer Term of Order E3 

One finds from Eq. (36) that the outer expansion of the inner expansion of v* i s  

The  first  term represents the flow in the wake, owing to the potential  source,  and matches  with q2; the  second 

matches with a term of order E in the outer expansion of q*. T h i s  term i s  given by 3 

where 

The  first  term on the right of Eq. (42b) i s  required by matching, and i s  assoc ia ted  with the switchback term 

q3,. The second i s  a potential  dipole of arbitrary strength; t h i s  dipole i s  the eigensolution of order e3, i.e., 

i t  is the most general harmonic function homogeneous of degree 2 in the  var iables  xi and regular everywhere 

except a t  the origin. 

’u 

H. The Inner Term p 3  

3 The term of order E in the inner expansion of pressure s a t i s f i e s  

22 
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I 

where f 2  i s  given by Eq. (27a) and where 

2 
1 d v ,  w 

One may obtain Eq. (43) by taking the divergence of Eq. (3a), expressing the result ing equation in inner 

variables,  and  expanding (cf. Eq. A-2). The solution i s  

- 
log x c2 + c1 ~ + -  

R, 

16 2 3  x3 x 3  

e-2u 
- - p 2 -  (45) 

The  cons tan ts  c 1  and c2  can be determined by matching. One f inds by expanding in the overlap domain that  

the  inner and outer expansions of p* match to  order inclusive if and only if 

2 a2 
c 1  = - 

Re 

a 2  

2 Re 
c 2  = - ( 2 l o g R e  - 2 log 2 - 5 )  

where 2, i s  the arbitrary constant appearing in Eq. (42b). Note that  Eq.  (45) i s  assoc ia ted  with a switchback 

term P3,. 

T h e  term p 3  l e a d s  to the following conclusions regarding the inner expansion of p* for the  axially 

3 symmetric case: (1) to  order E exclusive,  the  pressure penetrates  the wake, i.e., a l l  terms a r e  functions of  

23 
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- 
x alone, and (2) owing to  the nonlinear effect ,  there e x i s t s  a term of order 

the wake; the pressure discontinuity of  th i s  order i s  

which i s  discontinuous a c r o s s  

where 

3 a  P 2  

and y = Euler's constant. 

I .  Higher-Order Terms 

(47b) 

Terms of higher order have not been studied in detail .  However, i t  appears  that  the  construction 

proceeds indefinitely, involving no change of the bas ic  form (Eq. 15, 16) of the expansions. A sui table  

sequence of orders, { (E)}, seems to consis t  of functions E~ (log €)it  where i = 0, 1, 2, . a -  , and j = 0, 1, 

, i - 1. I t  h a s  been brought to  our attention that  a similar conjecture seemed justif ied in Ref.  2. 

Par t ia l  sums of the  inner and outer expansions involve a number of arbitrary constants  (e.g., a, m ,  
,-- 

a l ,  al ,  m l ) .  A general fact  may be pointed out concerning these constants:  the number of arbitrary constants  

and the eigensolutions are unchanged if the Navier-Stokes equations are replaced by the Oseen  equations.  

Hence, insofar as our construction procedure indicates,  given any Navier-Stokes solution which h a s  an 

expansion of the form considered here, one can find an Oseen  solution with the same constants ,  and 

conversely. 

J. The Composite Expansion 

On the basis  of the inner and outer expansions of the velocity and pressure,  a c o m p o s i t e  expans ion  

uniformly val id  as r -+ 00 may be constructed ( s e e  Ref .  2, 3, and 4). T h e  procedure u s e d  is essent ia l ly  that  of 

Ref. 2, and we s ta te  here only the results.  L e t  E ( w )  and En(w) denote partial sums of the inner and outer 
,-- 

24 
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expansions (Eq. 15 and 16) which include terms of order E ~ .  By virtue of Eq. (9), we then define 

and 

q. = u t  iz + u?i  + w; i ,  Z P  I 1  

We also define the common parts 

w; = 0 

- 
3a2 logx* a 2  1 al  + - - + -  (2 log 2 - 5) - + - - 
%e e 3  2% x*3 **3 

and 
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Then the functions 

provide uniformly valid approximations (cf. Appendix B,  Section I) .  The error may be estimated to be O ( T - ~ )  

in u * ,  O ( r -  5’2) in v*, and 0 ( r - 3 )  in p*, uniformly as r --f 00. 

26 



JPL Technical Report No. 32-480 

A. 

IV. THE ASYMPTOTIC EXPANSIONS FOR THE GENERAL THREE-DIMENSIONAL CASE 

Crossflow and Pressure: The Multidimensional Problem 

In  t h i s  Par t ,  expansion procedures a r e  given and expansions are  constructed for the general  c l a s s  of 

three-dimensional Navier-Stokes solut ions defined in Section 11-A. Axial symmetry i s  no ‘longer required. 

However, a different expansion procedure sugges ts  itself (and will be here adopted), owing to certain 

differences in the nature of crossflow and pressure in the wake region. 

For problems involving a two-dimensional continuity equation (e.g., Ref .  2 or Par t  III), whenever u* 

i s  given. the order of the crossflow (and, indeed, the crossflow itself) is fully determined by the  continuity 

equation alone, together with a sui table  boundary or matching condition. Consider, for example, the axially 

symmetric case: here u* - i i s  of order E in the wake region. Moreover. q* - i i s  of order E -  in the outer 

region. Hence, by the continuity equation and matching, L>* is of order 

LJ* i s  “small” with respect  to the momentum equation, which then degenerates  to dp*/dp = 0. 

3 

in the wake. On the other hand, 

For a problem involving a multidimensional continuity equation, however, the si tuation i s  different. 

Here, the continuity equation does  not determine the crossflow. Hence, the crossflow may be large with 

respect  to t h e  continuity equation and also with respect to the matching conditions for large p. A striking 

illustration i s  given by the so-called “!ifting case”  (see Sect ions IV-D and IV-L). For the l if t ing c a s e ,  the 

axial  velocity disturbance, u* - 1, remains of order E (equivalently, r*-’)  in the wake region. The crossflow 

components, ti* and w * ,  are, however, a l so  of order E and, hence, are obviously ‘‘large’’ with respect  to the 

continuity equation. The  large crossflow in the lifting case a r i s e s  from t h e  “horseshoe vortex” term of the 

wake expansion, qfi (Eq. 67b), which, in particular, vanishes  for large p and therefore s a t i s f i e s  homogeneous 

matching conditions. On the other hand, u* and w* are no longer “small” with respect  to the  momentum 

equation; the  governing system of approximate equations i s  a system of three simultaneous partial  differential 

equations for u*,  w * ,  and p*, namely, the two momentum equat ions (%a and 58b) and the continuity equation 

(58c) in the crossflow plane.  Hence, procedures for the multidimensional c a s e  involve a different sequence 

of s teps ,  a sequence which, in a sense ,  i s  opposite to that of P a r t  111 and Ref. 2. 

The three-dimensional procedures a r e  introduced in Sect ions B and C below, by a s ta tement  of form 

of the expansion (Eq. 53 and 56). and are explained further in subsequent  sect ions.  The methods of Part 111 

are  certainly not a “special  case”  of the multidimensional methods; solut ions with axial  symmetry may, 
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of course, be treated a l so  by the three-dimensional method, and the resu l t s  must agree numerically. However, 

the construction i s  entirely different. T h i s  engenders no paradox, s i n c e  in P a r t  I11 axial  symmetry i s  intro- 

duced into the governing equations, while in the present  Part i t  i s  a consequence of t h e  boundary conditions. 

B. The Inner and Outer Expansions 

T h e  three-dimensional solut ions of Eq. (3), P a r t  11, will b e  studied. Given the  solution of Eq. (3), 

the x*-axis i s  parallel to  the velocity a t  infinity ( s e e  condition 5a). T h e  y-axis  is now chosen to be parallel  

to the component of the total force act ing on the body (or upon a c losed  streamsurface in the flow field) 

which i s  normal to the x-axis; th i s  normal component will b e  cal led the  lift. The  dimensionless  var iables  

x*, xi, and Xi are  defined in Part 11. Under the outer limit p rocess  (;i fixed), q* + i uniformly. An expansion 

of the form 

A- 

( 5 3 4  q* = i + E 2 ”  q2(x i )  + €3 log E q3a(;i) + 2 q 3  (;i) + o (€3) 

will be constructed. The  outer expansion i s  in general nonuniform in terms of order E or higher a t  the 

posit ive x-axis. The nonuniformity represents  the wake. The  inner expansion will  be t reated differently here  

than in the axially symmetric case.  The  velocity q* will be expressed as the sum of a crossflow velocity q 

and an axial  velocity u i :  

A- 

t 

+ q* = u i  + q (54) 

In order to obtain an indexing of terms such that each value of the index corresponds to a definite “s tep” in 

the construction, we introduce new dependent variables: 

- 
u = €-1/2(u* - l), - P ’ E  -1/2p* (55) 

28 



JPL Technical Report No. 32-480 

For xi fixed, an  expansion of the form 

will be constructed. In particular, the plane of the variables 7 and 7 will be referred to  as t h e  “crossflow 

plane”;  x may be regarded as a parameter in the inner expansion. 
- 

As explained in P a r t  11, the terms of the outer expansion sa t i s fy  the Laplace  equation, 

,b -2 

Q x q y  = Q qv = O 

The terms of the inner expansion sat isfy the following equations: 

- 
where V+ denotes  the operator 

(57) 

- 

O+ = ($ ’ ;) 
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in the crossflow plane. The forcing terms f,, g,, and h ,  (V > 0) may be determined reiteratively from the 

exact  equations (A-1). In particular, f, vanishes  for v < 1, and g, and h ,  vanish for v .< 3/2.  Equat ions 

(58b) and (58c) consti tute a simultaneous system for the crossflow and the pressure.  At each s tep ,  the cross- 

flow and the pressure may be determined first ,  and then the axial  velocity may be found from E q .  (58a). 

C. Fourier Anolysi s o f  the Inner Terms: Eigensolutions 

I t  will be convenient to carry out the solution of  Eq. (58) in cylindrical polar coordinates ( s e e  

Section 111-A). In particular, each term of the inner expansion may then be expressed as  a terminating 

trigonometric s e r i e s  i n  8, the coeff ic ients  of the s e r i i s  depending only upon x and 7. We define the cross- 

flow terms vv  and ulv by 

- 

_ _  _ _  
If Fv(x, p , 6 )  denotes any of  the terms u , ,  z),, w , .  or p,. expressed as a function of the var iables  x, p , 

and 6, we shal l  assume that there ex is t s  a Fourier expansion of F, of the form 

where N i s  a suitable upper bound, depending upon v (Section I V - E ) .  The  terms F: and’: will be referred to 

simply as the orthogonal Fourier coefficients of order v and degree n. The Fourier expansion (61) will be 

constructed for several of the inner terms (Sections IV-D through IV-H).  

The  Fourier coefficients u”, u : , $ ,  and p: (n = 1, 2, ) sat isfy the following system of equations: 
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where the  differential operators H n  and L n  are defined by 

The lower s ign in Eq. (6%) i s  understood to apply to the equations for the orthogonal coefficients,  obtainable 

from Eq. (62) by replacing u: by&:, z: by w:,  / z  by f:, e tc .  The forcing terms f:, g:, h:, f : ,  etc., 

(n = 1, 2, ) may be computed from the Fourier expansions of the forcing terms in Eq. (58).  
- - 

The c a s e  n = 0 must be treated somewhat differently, s i n c e  Eq.  (62) i s  then a redundant system of 

equations.  Equation (62b) i s  in t h i s  c a s e  replaced by the equation for zoo,: 

Equat ions (62a), (62c), and (62d) m a y  be solved for u v ,  0 0  v v ,  and p;, and w: i s  given separately by Eq. (63). 

The  eigensolutions of the “inner equations” are defined to be the relevant solut ions of the homo- 

geneous system of equations corresponding to Eq. (%), that  i s ,  homogeneous solut ions sat isfying the princi- 

p les  of eliminability and transcendental decay of vorticity. If the  eigensolutions are  expanded in Fourier 

s e r i e s  of the form (61), there exis ts ,  as a consequence of these  principles,  a condition on the order and 

degree of the coefficients:  an eigensolution which is of order 6 v ( ~ )  = cv in the inner expansion (Eq. 56) will 

have a nonzero Fourier coefficient of degree n (n = 0, 1, 2, - e - )  if and only if 
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n 1  

2 2  
v - - - - -  - non-negative integer.  (64) 

T h i s  result  follows from the discussion in Section I1 of Appendix A.  Whenever condition (64) i s  sat isf ied,  

the Fourier coefficients of the eigensolutions (denoted below by subscr ipt  e) are defined by 

whenever n = positive integer, and by 

un ”e = a: w;+,/, - pn, 
e 

(66 d) 

for the case n = 0. The eigensolutions Wz are defined in AppendixlA (cf. Eq. A-11). The quant i t ies  a i ,  b i ,  

and ;,” (n  = 0, 1, 2, ... ) are arbitrary constants;  the  orthogonal coeff ic ients  involve the constants  

and z:. 
, &;, 
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D. The Leading Terms Due to Lift and Drag 

T h e  leading terms of the inner expansion are 

where 

a% e-a 
u u 2  = - ~ - - 

4 n  x 

0 

and 

(67a) 

Here a and b are arbitrary constants,  related to the drag and lift, respectively (cf. Eq. 22a; s e e  a l so  

Section IV-K). 

To obtain Eq. (67) and (68), one first  notes that the leading terms are eigensolut ions and hence may 

be constructed from Eq. (65) and (66), subject  to condition (64). Two c a s e s  are significant: (1) v = 1/2, 

n = 0, and (2) Y = 1, n = 1. The  first  case gives  the leading term in the inner expansion of the  axial velocity, 

Eq. (67a); all other terms are eliminated by matching. The second case  g ives  the leading term of the cross- 

flow, Eq. (67b); the corresponding pressure term i s  zero by matching. Note that the coefficients orthogonal 

to Eq. (68) vanish as a result  of the orientation of the coordinate system. 

The  term q2 of the outer expansion (cf. Eq. 15a) cons is t s  of two parts: 

where 
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The potential 4; i s  required by u : , ~ ,  as explained in Sect ions 111-C and 111-D. The remaining term in Eq. 

(69b) i s  the  potential of a ‘‘horseshoe vortex” extending downstream from the origin along the posit ive 

x-axis.  The horseshoe vortex term in the outer expansion i s  required by matching, as can be s e e n  from the 

outer expansion of qi. 

- 

E. A Remark Concerning the Nonlineor Effect 

We have remarked above (Section IV-C) that the order and degree of the coefficients in the Fourier 

expansion of the eigensolutions of Eq. (58) are subject  to the  condition 

n 1  

2 2  
2/ - - - - = 0 ,  1, 2, ... (70) 

whe e n may be any non-n gative integer. It appears  a l so  that the forcing terms in Eq.  (62) vanish unless  

Eq. (70) i s  satisfied.  T h i s  p laces  an upper limit of N = 2v - 1 on the degree of the coefficients of order Y 

in the Fourier expansion of a n  inner term (cf.  Eq.  61). Thus,  coefficients of large degree are  necessar i ly  of 

large order. 

In order to prove the las t  asser t ion,  i t  i s  convenient to introduce the notation ( v , n )  for a term of 

order 8‘ in the inner expansion (56) whose Fourier expansion involves a nonzero coefficient of degree 

n(n = 0, 1, 2, -.-)? The forcing terms in Eq.  (58) may be divided into l inear and nonlinear parts.  A s  a resul t  

of the l inear par ts ,  (a, b )  generates  a higher-order term (a + 1, b). The  nonlinear par t s  of the forcing terms, 

however, may generate higher or lower harmonics. In particular,  (a, b )  and ( c ,  6 )  may interact nonlinearly to 

generate any of the terms 3 

The discussion of the present section may easily be extended to include terms of intermediate order, e.g., of 
order ev (log E ) ~ ,  p >  0. 

3Note that, a s  a result of our  choice o f  dependent variables, a term ( v ,  n) may generate a “higher-order” term 
of the same formal  order. The question here i s  entirely one of numbering the terms in a manner consistent with the 
possibility of crossflow. In  fact, no such terms appear in the expansions of the crossflow. 
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1 

1 
a + c + - - ,  c + d  

2 

2 3 

1 
a + c - - ,  c + d  

2 

1 

2 I C  - I) a + c + - - ,  

(V2, 0) : (1, 1) 
(3/2, 0) : (1, 1) 
(3/2, 2) : (1, 1) 

or 

(1/2, 0) : (2, 3) 
(3/2, 2) : (1, 1) 

) 
1 

n + c -  - I C - d j  ( 2 

A simple calculation shows that, whenever (a, b )  and ( c ,  d) sat isfy Eq. (70), s o  do all terms which they may 

generate in the  higher-order computations. Since the leading terms are  eigensolutions,  the asser t ion follows 

by induction. 

Table 1 shows several  terms of integral order which a r i se  as a resul t  of the nonlinear effect. The 

symbol (a, b )  : ( c ,  6) denotes  a term generated by nonlinear interaction of (a, b )  and ( c ,  d). 

Table 1. Integral orders in the inner expansion 

1 /2 

1 

3/2 

2 

0 

Leading terms 
due to drag 

Leading terms 
due to lift 
(1/2, 0) : (1, 1) 

(11’2, 0) : (3/2, 2) 
(1, 1) : (1, 1) 

t 
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It can b e  shown that,  to compute the entry v = a, n = b in Table  1, it is necessary  to consider only 

the terms which appear on or within the upward-running diagonals from the point v = a, n = b. Similarly, one 

finds that the “domain of influence” of a term (a, b) cons is t s  of the  entr ies  on or within the downward- 

running diagonals.  

F. The First Effect of Wake Displacement 

T h e  Fourier expansion of the term of order E in the inner expansion of the  axial velocity i s  

u 1  = ut (T, p) s in  8 + 4: (X, 7) c o s  8 (71) 

The  coefficients in Eq. (71) sat isfy (cf. Eq. 62a) 

The  equation for pressure is homogeneous, and, by matching (cf. Eq. A-14, Appendix A), 

1 1  
P 1  ‘ 1 1  = 0 

T h e  forcing terms in Eq. (72) are  

- -2  
P X  

1 
- f 1 =  0 
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where 

One finds 

1 1 - 

P X  0- 

1 

2 
e-“Ei(-o) + - (e-20- e-“) - e-”log D +  (log z - Y + 1)e-D + u i e  (76a) 

1 1  1 1  =‘11 
e 

(76b) 

Equation (76a) represents  perturbation of the flow due to “displacement of the wake.” The  nonlinear 

interaction i s  between the leading terms due to drag and to lift. The downwash field assoc ia ted  with the 

trailing vortex d isp laces  the wake below the  positive y-axis. The first  correction for th i s  effect appears  in 

the t e rn  u,. (The crossflow assoc ia ted  with the deflection of the wake i s  of higher order, of order e2, cf. 

Section IV-H.) 

The switchback term uia may be obtained from Eq. (76a) in the usual  way. The  appearance of a term 

analogous to u:, in the expansion for the two-dimensional ca se  is linked historically with the so-called 

“Fi lon Paradox” ( s e e  Ref. 2; see also Section IV-L). 

G. The Crossflow of Order 

The terms of order e3I2 in the inner expansion of the crossflow components and pressure have the  

representations: 

v 3 / 2  = v: , , (~,p)  + v 3 / 2  G,F) s in  2 8  + x : / 2 G , p )  cos  2 8  (77a) 
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The coefficients satisfy the following sys t ems  of equations: 

H ,  ( w : / ~ )  = 0 

where 

(80 c) 

(8 l a )  
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a 2 
-3,2 = - ~ 2 ) - - ( 1 k 2  k 3 / 2  [ 1 

aF 

and v l  and zu: are given by Eq. (68b). 

The  solution of Eq. (78) i s  

0 where m i s  an arbitrary constant, related to the axial torque. The terms v 3 / 2  and w!,,2 are therefore identical  

with the terms of equivalent order which were constructed in Part 111 (cf. Eq. 22). 

Integrating Eq. (79), one finds 

The  l a s t  term on the right was obtained in Section 111-D. Equation (84) shows that,  if the lift i s  not zero, 

pressure does  not penetrate the wake,  even to the first approximation. The difference in pressure ac ross  the 

wake h a s  the expansion 

The  term exhibited on the right ba lances  centrifugal forces within the trailing vortices,  and hence represents 

a nonlinear effect .  
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I 

The solutions of  Eq. (80) and (81) are 

2 2 
"3/2 = '3/2, 

2 2 
E 3 / 2  = E3/2,  

(87 a) 
1 1 

4 4 4 
+ - (3/2 + log 2 - y )  (m + 1) e-c + - (log x) (0 + 1) 

Equation (86c) follows from matching. From Eq. (87) one sees  that_vj/2 2 and wiI2  are assoc ia ted  with 

switchback terms_v;/2a and w : , ~ ~ .  The switchback term in the inner expansion of the  crossflow (cf. Eq. 

56b) i s  then of the form 

(88) 4/2a = w3/2 , (X 'P)  2 s in  2 0  + 4 / 2 a ( x ' F )  c o s  2 0  



~~~ ~~ 

JPL Technical Report No. 32-480 

H. Higher-Order Inner Terms Associated With Wake Displacement and L i f t  

An explicit and complete description of inner terms of higher order will not be given in th i s  Report. 

log E and of order However, i t  is poss ib le  to  determine, from the results given above, the terms of order 

e3 in the outer expansion (Eq. 53). The  procedure i s  to find in turn al l  terms of the inner expansion which 

vanish algebraically as 

when expressed in outer variables. T h e  inner terms in question are most eas i ly  interpreted through the 

corresponding pressure terms. We note in passing,  however, that  the inner and outer expansions of the cross-  

flow velocity would serve our purpose equally well, the equivalence being implied a t  each s t ep  by the 

matching conditions imposed on a given partial sum of the  ser ies .  

+ 0, and which, in particular, contain nontrivial terms of order e3 log  E or e3 

It follows from the structure of the inner expansion of the pressure, and by matching, that  inner 

pressure terms which are O ( e 3 )  in outer variables and which are not eigensolutions occur only when ( v , n )  

h a s  the values  (3/2, 2), (2, €), or (5/2,0), i.e., when v + n / 2  = 5/2. (We include at the same time al l  assoc i -  

a ted switchback terms. Note that eigensolutions in  the pressure which are 0 ( E ~ )  in outer var iables  occur in 

terms of arbitrarily large order and degree, subject  only to condition 70). T h e  equation for the pressure 

terms, obtained by taking the divergence of Eq. (3a), becomes, in the var iables  (14), (54), and (55), 

The symbol (:) denotes  here the sca la r  tensorial product. If the inner expansion (Eq. 56) i s  inserted into 

Eq. (89) one finds that there are (apart from switchback terms) four contributions t o  the right-hand s ide  of 

Eq. (89) which were not considered previously, and which are assoc ia ted  with poss ib le  algebraic terms of 

the required type. (Discussion of contributions from the terms (v,n) = (3/2, 2) i s  omitted here, s ince  these  

terms were given explicitly in Section IV-G). We define the  resulting pressure terms by F C i  ), i = 1, , 4. 

Then 
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dx 

The f i rs t  two equations have been solved and the resul ts  that  a re  needed la ter  are contained in  Eq. (93) and 

(94) below. The term p(3) resu l t s  from the nonlinear interaction between the axial  velocity due to wake 

displacement, and the leading terms due to l if t .  There i s  a poss ib le  contribution to the outer expansion of p* 

which i s  of order E ~ .  I t  will be shown, however, that ,  with the possible  exception of additive functions of x, 
there i s  no algebraic term which i s  independent of 0 and which h a s  th i s  property. I t  is sufficient to prove 

that the axially symmetric part  of p(3) i s  o (log p) as ,6 4 m . Now Eq.  (90c) may b e  written as a conserva- 

tion law in the crossflow plane 

s ince q i  is divergenceless in the  crossflow plane.  The asser t ion follows immediately by integration of Eq. 

(91) over the circle p =  Po in the crossflow plane,  using Eq. (67b), (68b), (71), and (77) to evaluate  the  

result ing contour integral a s  Po+ m . 

By a similar device,  i t  can be shown that p(4) i s  o (p -l) as 7 + m , and hence no algebraic term of 

degree 1 and order E is contributed to  the outer expansion of p* .  Here, u s e  i s  made of the conservation law 

- 
3 

- -  
and an orthogonal law obtained by replacing y by z and interchanging i and k in Eq. (92). 
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The needed resu l t s  concerning p(') and $') may be s ta ted  as follows: There i s  a term 

c2 (pi s in  8 + p i  COS 8) in  the inner expansion of which h a s  the outer expansion - 

Also, there is a term p Z l 2  in the  inner expansion of which h a s  the  expansion 

Moreover, Eq. (93a) and (93b) contain, apart  from eigensolutions and terms of degree 2, the  only pressure 

terms which match with the  term of order E in the outer expansion of the  pressure.  We note that the first  term 

on the right of Eq. (93a) matches  with F2 (cf. Eq. 53b). T h e  constants  c 4  and c 5  appearing in Eq. (93b) a re  

determined at a later stage by matching; c3 may subsequently be found by applying t h e  eliminability 

principle. 

3 

I. The Outer Term of Order c3 

The  outer term q3 (cf. Eq. 53a) i s  re la ted to a potential  $3 by 

- " 
43 = w 3 7  024, = 0 
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The $i( ; ,p)  are  given by 

The  functions B i ( Y , p )  and Ci (? ,p )  are defined in Appendix A ( s e e  Section 111). T h e  switchback term qSa 

may be constructed in the  usual  manner, using the definition of C i ( r  ?p).  
" 

In  addition to t h e  eigensolutions of th i s  order, the solut ions C y ?  C i ,  and C: are required by matching. 

If the  l if t  i s  zero, the axially symmetric term coincides with that given in P a r t  111 (cf. Eq. 42b). That part  

proportional to a2 i s  required to match the pressure to order 

inflow into the wake due to drag ( s e e  Section 111-G) i s  now opposed by an  outflow due to  crossflow. T h e  two 

effects  balance exactly when b = f l u .  The  solution C i  i s  assoc ia ted  with wake deflection, and the corre- 

sponding pressure matches with the  second term on the right of Eq. (93a). Final ly ,  C; is required to  match 

the two expansions of r* to order c3l2  inclusive.  T h i s  can b e  s e e n  from the outer expansion 

inclusive? It i s  interest ing to note that the  

for t h e  crossflow coefficient determined in Section IV-G. 
~ 

4Note that the t e r m s  of the outer expansion of velocity and pressure (Eq. 53) are here related by Eq. (181, Part 111. 
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J. The Composite Expansion 

T h e  composite expansion for the multidimensional problem may be  obtained by the  s a m e  procedures 

used  in the  axially symmetric and two-dimensional cases.  I t  appears  that  the number of s t e p s  required to 

reach a given degree of approximation is far greater in the lifting case ,  owing primarily to  the complicated 

interaction among the crossflow terms. However, the essentially second-order terms given above suffice to 

form an approximation valid uniformly to order e3j2 in the velocity and order 

equivalently, to the respect ive orders 7-3/2 and ,*-2 as ,* -+ m (cf. Appendix B, Section 11). Note that outer 

terms which a re  o (e2) will in no way be involved in this  approximation. 

in the pressure as E-+  0, or, 

Proceeding as in Section 111-J, we define 

- -  
1 + E ~ / ~  E l  (u) = UT (x;) 

u; = 0 

b case cos  28 u2 log x* s in  2 8  sin 2 8  
C + 2& ____ 

2m p*2 P*3 2% P* 
w * - - - -  - 2b,2/, ___ - ~ (97 c) 

(97d) 
a 1  

p E = - - - -  
4 m  x*2 
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With these  definitions, the desired composite expansion is again given by Eq.  (52), and i s  val id  to the  

respective orders stated above. 

The most surprising new feature of the general  three-dimensional solut ions occurs  in the  f i r s t  

approximation to the pressure.  It is clear  from the resu l t s  of Section IV-G that the nonlinear effect  manifests  

i tself  in the leading term of the s e r i e s  for the pressure.  TO put  t h i s  differently, i t  i s  impossible to construct 

the first  term in the Navier-Stokes s e r i e s  for the pressure,  purely from solut ions of the l inear  Oseen  equations.  

A s  i t  happens, however, the order of the leading term i s  in either c a s e  the same. 

K. The Calculation of Force and Moment 

The expansions (53) and (56) allow a determination of the force and moment which a c t  upon the 

so l id  (or upon any closed streamsurface containing the solid) in terms of the arbitrary constants  which occur 

in the ser ies .  I t  should be emphasized that these dynamical re la t ions imply no constraints  on the cons tan ts  

themselves and serve rather to re la te  them to observable physical  quantit ies.  

The conservation laws  for momentum and for angular momentum are defined by 

where the tensors  A* and&!* are given by - - 
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Here, 

- I = identity tensor and def q* = deformation tensor. - 

If Gauss' theorem is applied to Eq. (99), the surface integral will cons is t  of two parts. The f i rs t  may be 

chosen to be the body surface So; the second will be chosen to be a sphere of radius R ,  which contains  So. 

In the limit R, + m, the asymptotic expansions may be u s e d  to evaluate  the integral over the  la t ter .  

One  f inds 

F* = -f-f A* - ds* = ai + b j  - 
S O  

( l o l a )  

(101b) 

where ds* is the dimensionless area element, directed toward the interior of t h e  body, and y = Euler 's  

constant.  T h e  terms on the l e f t  of Eq. (101a) and (101b) are respectively the dimensionless force and moment 

experienced by the solid.  

The manner in which Eq. (101) is obtained will be i l lustrated by carrying out  in detai l  the calculation 

of the k contribution to the moment. Consider first  the contributions to t h i s  component from the inner expan- 

s ions.  We may assume the region of integration to  consis t  of a portion of the crossflow plane x* = RZ whose 

area i s  large compared with E - ~ ;  we denote t h i s  region by XT. Now the integrand under consideration becomes, 

in  cylindrical polar coordinates (Eq. 12), 
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I 

x* av* 
k - @* - i )  = X* U* V* s in  6 + X* U* W* C O S  0 - p* u * ~  s i n  e - p* p* s i n  6 - __ ~ s i n  e - zQ ax* 

au* x* aw* x* au* x* au* 2P * cos e + ~ 

!RQ ax* RQ a p  WQp* a e  RQ ax* 
sin 0 ~ 

s in  e - __ ~ cos  e - __ __ - _ _ ~  

Expanding the right-hand s ide  of Eq. (102) in inner variables,  using Eq. (56) as well as the Fourier expansions 

for each inner term, we then have 

2 1 ,  X 
- - E -  Ut,) c o s  B + - G, 

%P € 

(103) 

Here 6; denotes  any remainder which cons is t s  of terms which are either o ( E  2 ) or which vanish when integrated 

with respect  to e between the  l imits  0 and 277. The  terms ut l )  (T, p), ut2) (T, p), and w 1  (x, p) are  not 

necessar i ly  independent of E and are defined by 

(2)  

s in  e v* = E s in2  e v i  + e2 s i n 2  e ut2)  + €; 

cos e = E cos  2 e E :  + cos2 e&) + 6; 
I 

Also, we note that  

(104a) 

(104b) 

(105a) 
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(105b) 

T h e  l a s t  expression i s  actually equivalent to a matching condition on the  crossflow velocity. 

It follows from Eq. (103), (104), and (105) that 

Evaluating these  integrals,  and set t ing the parameter x=  E Ro,  one obtains  

4n 1 - 2 n w  * 2rraw * 2 n a w  
M R,  - ~ log Ro + ~ t o g  2 + +) - ~ al  

R, R, RQ RQ 
3 -  (107) 

n, 

To compute the outer contribution, we  may assume that  q* p o s s e s s e s  a potential  +* (xi ; E ) .  Define, 
n, 

for c o s  p = $/, r fixed, 

Also, let Eo be the  surface of the sphere 7 = ER* minus a region of a rea  O ( E ~ )  containing the intersection 

with the  posi t ive ;-axis. It then may be shown tha t  

0 

1 
k - JJ_M* - ds* = - I + log E f S a  + I, + I ' +  o(1)  - 2 

'CO E 

- 
= M, (109a) 
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where 

I ,  = J" 
0 

'?= ER* 0 

2 I ' =  - __ 

Re 

( 109 b) 

(109c) 

Note that I ' i s  the contribution from the viscous s t r e s s e s  assoc ia ted  with the leading outer term due to l if t  

From the expressions given in Sections IV-D and IV-I and in Appendix A, we have 

1 
- 
" 
r 

(110b) 

2r 

log r s in  IC, 7 s in  $ 
F3 = {s in ;F  + [ - s in ;  l o g ( 1 -  cos;)] + ) +  - a 3  "2 (110c) 

2 Re 1 - c o s  ; 3 r 

A straightforward calculation then g ives  

2nw 
I, = 7 R t  E 

2 a w n  
I,a = - ~ 

RQ 

2 a w ~  3 a w r  2 a w ~  477 "1 
log E Ro + ___ - ____ log 2 + ~ a I ,  = ~ 3 

WQ Re RQ 3 

8 7Tw 2 6  I ' =  - __ - 

RQ2 Re 

( l l l b )  

( l l l c )  

( l l l d )  
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Returning to Eq. (108), the outer contribution is then 

- 27Tw 2 n a  w * 2 b  3 a w n  2aw1-r 4n ”1 
a 3  M 3  = - R: + ___ log R ,  - - + - - -  log 2 + - 

%Q %Q Re %Q Re 3 

The sum of all contributions, inner and outer, thus g ives  

* - - 2 b  4 a o 7 ~  4 7 ~  4n “1 
a 3  + - a  - -  k - J J M  - * d s * = - ( M 3 + M 3 ) = - -  -~ 1 

SO %Q Re %e 3 
- 

which verifies the l a s t  term on the  right of Eq. (101b). 

(112) 

(113) 

L. Discussion 

The principal conclusion that may be drawn from the resu l t s  of th i s  Pa r t  is that no fundamentally new 

ideas  are needed to extend existing asymptotic procedures to the three-dimensional problem treated in th i s  

Report. However, as noted in Section IV-A, the presence of crossflow does significantly alter the form of the 

construction. The presence of crossflow i s  largely associated with the exis tence of a lift; in fact ,  the cross- 

flow terms considered in th i s  Report, apart from the  eigensolutions, result  entirely from the presence of the  

so-cal led “horseshoe vortex” terms of the inner and outer expansions (cf. Eq. 68b, 69c). Since these  terms 

have no counterparts in the two-dimensional se r ies ,  the effect of lift is different in the two problems. 

The special  nature of the l if t ing case  considered in th i s  Report is emphasized by the observation 

that the first  approximation to the pressure is different for Navier-Stokes and Oseen solutions ( see  Section 

IV-J). No s imilar  conclusion may be drawn from the  two-dimensional or axially symmetric se r ies .  Th i s  point 

probably bears  directly on the rigorous proof of statement 1 (Section 11-B) for the general three-dimensional 

case.  

Apart from these differences in form, the ser ies  descr ibed here are closely related to the r e su l t s  of 

Imai (Ref. 1) and Chang (Ref. 2). In particular, the  orders which occur in both expansions appear to be of the  

5 form c‘’2 (log EY where i and j are non-negative integers and j has an upper bound depending only upon i . 

For the terms considered here, j 5 i - 1. 
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I t  i s  a l so  interesting to note that the c lass ica l  error leading to Filon’s paradox h a s  a direct  three-dimensional 

counterpart. This i s  obvious from the presence of canceling terms in Eq. (107) and (112) which a re  indi- 

vidually of order log r* as r* + W .  The explanations of Fi lon’s  resul t  that  have been given by lmai and by 

Chang carry over with no essent ia l  changes to the present  problem. 

The bas ic  equivalence of our parameter procedure to  related coordinate-type procedures i s  apparent 

a t  any s t a g e  of the construction, and, with due regard to the occurrence of switchback, our resu l t s  would 

indicate that there are no intrinsic advantages assoc ia ted  with either approach. A somewhat different question 

concerns the possibil i ty of a more direct ana lys i s  in the crossflow plane.  I t  may actually be preferable to 

integrate the primary crossflow system directly (Eq. 58b and 58c) rather than to s tar t  from the secondary (and 

derived) system (Eq. 62b, 62c ,  and 62d). The possible advantages of t h i s  modification have not, however, 

been studied in detail. 
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NOMENCLATURE 

A. Variables and Parameters 

L 

R 

E 

U 

P 

P 

U 

Re 

r 

def q 

M 

reference length 

extraneous length 

small  parameter = L / R  

reference velocity 

reference pressure 

density (constant) 

kinematic viscosity (constant) 

Reynolds number = U L / u  

position vector = L r *  

velocity = Uq* 

pressure = pu2p* + P 

velocity potential = U L  @ 

identity tensor 

a9j aqj 

‘ I  ax axi i 

p q o q  + ( p - P ) L - p u d e f q  - = pU2A* - 

deformation tensor, (def q) . .  = ~ + - 

2 2 *  force exerted on obstacle = p U  L F 

moment exerted on obstacle (positive by right-hand rule) = p U 2  L M* 
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NOMENCLATURE (Cont'd) 

B. Coo rdi na t e Sy stem s 

Carte s i  an: i, i ,  k = unit vectors 

r = x 1 i + x2i + x3k,  x 1 = x, x2 = y, x 3  = z 

2 2 2 %  r = (xl + x2 + x 3 )  

Cylindrical Polar: i z  = i ,  i o ,  i o  = unit vectors 

r = x i  + p i p  

q = u i x  + v i  + w i g  
P 

Spherical Polar: p = x / r ,  $ = COS ,U 

q = Ui at infinity 

C. The Outer Expansion 

-2 

q, (xi) = term in outer expansion of velocity 

p, (xi ) = term in outer expansion of pressure 

+,Gi) = potentid of q,, q, = v$, 

% r \ ,  

-l, 

($:, 9:) = coefficient of (sin n 0 ,  COS n 0) in Fourier expansion of 4, 
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NOMENCLATURE (Cont’d) 

D. The Inner Expansion 

- - 
= &*, w = E-%W*, p= E-% * u = E-%(u* - l), P 

a - 
q+ = v * i p +  w * i g ,  0, = 

u y  = term in inner expansion of u* (Part III) or 11 (Part IV) 

(oy ,  w,) = term in inner expansion of 6, ul 1 (Part III) or (u * ,  w* )  (Part IV) 

(F:,!: ) = coefficient of (sin n 0, cos n 6’) in Fourier expansion of F,, 
F = U, V, W ,  p (Part IV) 

F: , Fn 

al, ml, 3, zi, b l ,  gA, zk 
= Fourier coefficients of eigensolutions (Part IV) 

e -”e 

are arbitrary constants 

E. The Composite Expansion (Appendix 8)  

qr = “fix + o*i + w r i g  = inner approximation to q* 

q,X = u,*iz + t.*i + u$ie  = outer approximation to q* 

q: = u z i z  + o*i + w r i ,  = common part of qf and q,* 

L P  

O P  

C P  

pi* = inner approximation to p* 

p,* = outer approximation to p* 

p: = common part of pi” and p,* 
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56 

i 

F. Mathematical Symbols 

a 0 b = dyadic product of vectors a, b; (a o b )  - c = a (b - c) for any vector c 

A : 6 = scalar product of tensors A and B; - - - - -  

A : 6 = C A . .  B . . ;  A . .  , B . .  = ~artes ian  components 
i , j ' l l '  ' I  'I - - -  

f,, gv, h ,  = forcing terms 

y = Euler's constant = 0.5772+ 
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APPENDIX A 

1. THE NAVIER-STOKES EQUATIONS 

In dimensionless cylindrical polar coordinates ( see  Section 111-A), the Navier-Stokes equations for 

the stationary flow of a viscous,  incompressible fluid are 

all* au* w* ap* ap* 1 

ax* ap* p* a8 ax* RQ 
u* __ + v* - + - - + - - -  v * 2 u *  = 0 (A-la) 

av* av* w* av* w * 2  ap* 
u* __ + v* - + - - - -  + -  

ax* ap* p* ae P* JP* 

where 

aw* aw* w* aw* v*w* 1 ap* 
ax* ap* p* ae P* p* ae 

u* - + v* ~ + - -  + -  + - -  

W* 2 av* 

a ( p U * )  a ( ~ * ~ * )  aw* 
ax* JP* ae 

+ + - - - = o  

i a  1 a2 a2 a2 
ax*2 a p 2  p* ap* p*2  ae2 

+ - -  + - -  + -  * 2  v = -  

(A-lb) 

(A-lc) 

(A-ld) 

(A-le) 
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The divergence of the momentum equation becomes 

II. SIMILARITY SOLUTIONS OF THE EQUATION H,'(W) = 0 

We seek solutions of the homogeneous equation H n ( W )  = 0 which are of the form 

By direct substitution, 

where 

D:($J) = u+"+  ( o + n + l ) $ J ' +  ( r n + n / 2 ) $ J  

59 

(A-2)  

(A-3) 
p n ; m - n / 2  

where n = 0, 1, 2,  , m 2  0, and 5 i s  defined by 

(A-4) 

(A-5)  

(A-6) 
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the prime denoting differentiation with respect  to 0. Two linearly independent solut ions of t h e  equation 

Di ($) = 0 are  

$1 = @ ( m  + n/2, n + 1; -0) (A-7a) 

where @ denotes  the confluent hypergeometric function. Since @ ( a ,  b; 0) = 1, one sees from Eq. (A-7b) tha t  

$2 h a s  a pole of order n ( n  = 1, 2, e - . )  a t  the origin and behaves as log 0 if n = 0. Thus  for all non-negative 

integers n, W i s  regular on the posit ive Y-axis if and only if $ i s  a multiple of $ l .  

A s  u+ W ,  we have (cf. Ref. 6 ,  p. 265) 

One sees from th is  expansion that decays  exponentially if and only if 

rn - n / 2  = 1, 2, 

If 2m = n, Eq. (A-8) may b e  replaced by the expansion 

n !  

Un 

$' - - + ... 

(A-8) 

(A-9) 

(A-10) 

where the dots  indicate a transcendentally small remainder. The  right-hand s ide  of Eq. (A-10) is replaced by 

log u for the case n = 0. Comparing Eq. (A-3) and (A-lo), one sees tha t  there ex is t  solut ions of H n ( W )  = 0 

whose algebraically decaying par t  i s  a function of 

exceptional solutions appear as  eigensolutions in the inner expansion of the  t ransverse velocity components. 

T h e  c a s e  m = n = 0 i s  then eliminated by matching. 

alone; for these  solut ions 2rn = n = 0, 1, 2, e-. . These 
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The solut ions W of interest  in Parts 111 and IV are regular on the posit ive x-axis  and sa t i s fy  

homogeneous matching conditions a t  = D O .  We define the eigensolutions 

where rn - n / 2  = 1, 2, .-- , n = 0, 1, 

multiples of the solutions W;. 

, or 2rn = n = 1, 2, .--. The desired eigensolutions are constant 

111. SEVERAL SOLUTIONS OF LAPLACE’S EQUATION 

We consider first solutions of Laplace’s equation which are of the form 

(A-11) 

(A-12) 

where 

(A-13) 

By direct substitution, GX is a solution of Legendre’s differential equation. If G: is required to be a regular 

function of p on the interval - 15 p 5 + 1, then A = 0, 1, 2, e-. and G i  = P i ,  the assoc ia ted  Legendre 

functions of the  f i rs t  kind. Under these conditions RI is,within a multiplicative constant, the potential of a 

term in the outer expansion of -q* - i which matches with the eigensolut ions of order u = h + n/2 + 3/2 in 

the inner expansion of p. Since P i  = 0 whenever n - A = 1, 2, , we have, by matching, 

-u .,” = 2 = 0, (3/2n - u + 1/2 = 0,  1, 2, 
--I/ 

(A-14) 

in the eigensolution Eq. (65). 
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In order to match the inner and outer expansions of u* and w* for the general three-dimensional ca se ,  

additional solutions of the form (A-12) are required for which h = n - 1. For de ta i l s  concerning the  solut ions 

of Legendre's  equation applicable to these  cases ,  see Ref. 7. For our purposes, w e  define 

(A-15) 

where F denotes  the hypergeometric function. The function - C R , " _ ~  ( c  = arbitrary constant) i s  the potential 

of a term in the outer expansion of q* which matches with the eigensolutions cW,",, (s in  ne, cos no) appear- 

ing in the inner expansion of v* and w*.  

A final c lass  of harmonic functions which are required in the construction have the form 

s",(;",/.L, 8)  = CI(;,P) (s in  no, cos  ne) 

- - ?-(*+I) [ K I ( ~ )  - G I ( ~ )  . log 71 (s in  no, cos no) 

The first  few such solut ions are defined by 

GY = ,U 

K y  = p l ~ g ( l - p )  + 1 

'/2 

% 

G :  = - ( 1 -  p2) 

K i  = (5) - ( 1  - p 2 )  log (1  - p )  

G ;  = - (P2L:i ') 
K i = -  [ 1 + 2 p +  ( 2 + P - 2 )  log  (T)] 

4 

(A- 17f) 
4 1 + P  

The S i  are regular everywhere except a t  the origin and along the posit ive ;-axis. Note a l so  that these  solut ions 

always require switchback terms ( see  Section 111-F'). The construction of t hese  solut ions follows in a straight- 

forward way from the assumed form and i s  omitted. 
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(A-16) 

(A- 17 a) 

(A- 17b) 

(A-17~)  

(A-17d) 

(A-17e) 
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APPENDIX B 

1. THE COMPOSITE EXPANSION FOR THE AXIALLY SYMMETRIC CASE 

where 

q,* = i + V* 

p , * =  1 -  u,* 

1 a2 1 a 

4 r*2 X* 

+ - -  ( ( 1  - Q) e-" [Ei (--ci) - 1og.a + log 2*I  - 2 e-" - e-2") + - (1 - a) e-" 

a2 (T 

2% p*2*2 
+ - ___ { (2 - U )  e-" [Ei(-m) - log c + log z*] 
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4T x*2  8n x*4 2% x * 3  L 
1 

2 
+ - -  + - -  I z L l ( - 2 o )  - - 

e-2u 2 a 2  logx* R, 

16 x*3  % x*3 
(2% - 2 log 2 - 5) + - - p -  

a 1  
u * =  1 + -  - 

C 
4I-l x*2  

a P* a2 1 
C 

4n x * 3  We p*& 

W t  = 0 

,L 

a 1  3 a  p*2 2 a 2  logp* 3 a 2  logx* a2 1 5 
+------ + -  ( 2  log 2 - 5) - + - 

4T x*2 4n x*4  % x * 3  Re x*3  2% x * 3  x * 3  

p ; = - - -  

Here 
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I I I .  THE COMPOSITE EXPANSION FOR THE GENERAL THREE-DIMENSIONAL CASE 

I where 

p,* = 1 - u ;  

1 
+ - ( e -2"-  e-") - e-"logcr 

a 

1 D sin 8 
u * = - -  e +--a- a -u 

X 2 p* x* 
- 

(T e-" 
(ai sin 8 + cos e )  I+,*,; + (log x* - y + 1) e-u 

b (e-"- 1) a ~ e - ~  2w2 cos 2 8  
v!: = - sin 8 - - - + - -  G (0; x * )  

27T p*2 27T p * x *  R, p*3 

2 + - (1 - e-"- De-") ( b : / 2  sin 2 8  + &iI2 cos 8) 
P*3 
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2 u 2  sin 2 8  a 
+------- [ C ( U ; X * )  - u - G ( U ; X * ) ]  

2 

P* 
+ - ( 1  - e-"- 0 e - O -  u2 e-") @ i I 2  sin 8 - b:/ ,  cos  6) 

4 a  'I u2 cos 2 8  1 1 

4 x*2 2 4 0  
+ - ____ [ u E i ( - 2 0 )  - a E i ( - a )  + - (e-'"- 2 e - 7  - - (3e-'"- 4e-") - - 

u; = 0 

b sin 8 u2 log x* 2 

2 n p * 2  2% p*3 P3 
cos 2 e + ~ ( b i I 2  sin 2 8 + COS 2 8 )  .:=----------- 

b cos  8 u2 logx* 2 

211 p*2 2% p*3 P3 
sin 2 8  + ~ (bi /2  sin 2 8  - b i I 2  COS 2 8 )  w*, = - - - - ~ 

a 1  
p : = - - -  

47T x*2 

Here 
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1 1 1 

4 4 4 
+ - (3/2 + log 2 - y )  (a + 1) e-c + - (log z*) (a + 1) e-u - - log z* 
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